A study of the interaction of a new benzimidazole schiff base with synthetic and simulated membrane models of bacterial and mammalian membranes

dc.contributor.authorOñate Garzón,José Fernando
dc.contributor.authorLiscano Martínez,Yamil
dc.date.accessioned2025-06-06T16:22:59Z
dc.date.available2025-06-06T16:22:59Z
dc.date.issued2021
dc.description.abstractBiological membranes are complex dynamic systems composed of a great variety of carbohydrates, lipids, and proteins, which together play a pivotal role in the protection of organ-isms and through which the interchange of different substances is regulated in the cell. Given the complexity of membranes, models mimicking them provide a convenient way to study and better understand their mechanisms of action and their interactions with biologically active compounds. Thus, in the present study, a new Schiff base (Bz-Im) derivative from 2-(m-aminophenyl)benzimidazole and 2,4-dihydroxybenzaldehyde was synthesized and characterized by spectroscopic and spectro-metric techniques. Interaction studies of (Bz-Im) with two synthetic membrane models prepared with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC/1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) 3:1 mixture, imitating eukaryotic and prokaryotic membranes, respectively, were performed by applying differential scanning calorimetry (DSC). Molecular dynamics simulations were also developed to better understand their interactions. In vitro and in silico assays provided approaches to understand the effect of Bz-Im on these lipid systems. The DSC results showed that, at low compound concentrations, the effects were similar in both membrane models. By increasing the concentration of Bz-Im, the DMPC/DMPG membrane exhibited greater fluidity as a result of the interaction with Bz-Im. On the other hand, molecular dynamics studies carried out on the erythrocyte membrane model using the phospholipids POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), SM (N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) revealed that after 30 ns of interaction, both hydrophobic interactions and hydrogen bonds were responsible for the affinity of Bz-Im for PE and SM. The interactions of the imine with POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol) in the E. coli membrane m
dc.identifier.citationAragón-Muriel, A., Liscano, Y., Morales-Morales, D., Polo-Cerón, D., & Oñate-Garzón, J. (2021). A study of the interaction of a new benzimidazole schiff base with synthetic and simulated membrane models of bacterial and mammalian membranes. Membranes, 11(6), 449. https://doi.org/10.3390/MEMBRANES11060449/S1
dc.identifier.issn2077-0375
dc.identifier.urihttps://repositorio.usc.edu.co/handle/20.500.12421/6964
dc.language.isoen
dc.subjectBenzimidazole
dc.subjectCalorimetry
dc.subjectImine
dc.subjectModel membranes
dc.subjectMolecular dynamics
dc.subjectSchiff base
dc.titleA study of the interaction of a new benzimidazole schiff base with synthetic and simulated membrane models of bacterial and mammalian membranes
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
articulo
Size:
2.34 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: