Λ scattering equations

dc.contributor.authorGomez, Humberto
dc.date.accessioned2019-07-03T22:13:14Z
dc.date.available2019-07-03T22:13:14Z
dc.date.issued2016-06-01
dc.description.abstractAbstract: The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm. © 2016, The Author(s).en_US
dc.identifier.issn11266708
dc.identifier.urihttps://repositorio.usc.edu.co/handle/20.500.12421/257
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.subjectDifferential and Algebraic Geometryen_US
dc.subjectField Theories in Higher Dimensionsen_US
dc.subjectScattering Amplitudesen_US
dc.subjectSuperstrings and Heterotic Stringsen_US
dc.titleΛ scattering equationsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
-scattering-equationsJournal-of-High-Energy-Physics.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: