A Diophantine Equation With Powers of Three Consecutive k-Fibonacci Numbers

dc.contributor.authorGómez, Carlos A.
dc.contributor.authorGómez, Jhonny C.
dc.contributor.authorLuca, Florian
dc.date.accessioned2025-07-08T21:47:31Z
dc.date.available2025-07-08T21:47:31Z
dc.date.issued2024
dc.description.abstractThe k–generalized Fibonacci sequence {Fn(k)}n≥2-k is the linear recurrent sequence of order k whose first k terms are 0,…,0,1 and each term afterwards is the sum of the preceding k terms. The case k=2 corresponds to the well known Fibonacci sequence {Fn}n≥0. In this paper we extend the study of the exponential Diophantine equation Fn+1x+Fnx-Fn-1x=Fm with terms Fr(k) instead of Fr, where r∈{n+1,n,n-1,m}.
dc.identifier.citationGómez, C.A., Gómez, J.C. & Luca, F. A Diophantine Equation With Powers of Three Consecutive Fibonacci Numbers. Results Math 79, 136 (2024). https://doi.org/10.1007/s00025-024-02156-w
dc.identifier.issn14226383
dc.identifier.urihttps://repositorio.usc.edu.co/handle/20.500.12421/7290
dc.language.isoen
dc.publisherBirkhauser
dc.subject11B39
dc.subject11D61 11J86
dc.subjectexponential Diophantine equation
dc.subjectFibonacci numbers
dc.subjectlower bounds for nonzero linear forms in logarithms of algebraic numbers
dc.titleA Diophantine Equation With Powers of Three Consecutive k-Fibonacci Numbers
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A Diophantine Equation With Powers of Three Consecutive k-Fibonacci Numbers.pdf
Size:
436.57 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: