C. Investigación
Permanent URI for this community
Browse
Browsing C. Investigación by Subject "3"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Synthesis of Novel Triazine-Based Chalcones and 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines as Potential Leads in the Search of Anticancer, Antibacterial and Antifungal Agents(MDPI, 2024) Moreno, Leydi M.; Quiroga, Jairo; Abonia, Rodrigo; Crespo, María del P.; Aranaga, Carlos; Martínez Martínez, Luis; Sortino, Maximiliano; Barreto, Mauricio; Burbano, María E.; Insuasty, BraulioThis study presents the synthesis of four series of novel hybrid chalcones (20,21)a–g and (23,24)a–g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28–33)a–g and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,d–g, 24a–g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e–g, 33a,b,e–g exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 μM and LC50 values in the range of 4.09 μM to >100 μM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25–62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 μg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe.Item Thermal Decomposition of Compounds Derived from 2H-Dihydropyran: A Computational Study(MDPI, 2024) Ruiz, Pablo; Bucheli, Sara; Fernández, Paula; Quijano, Silvia; Quijano, Jairo; Gaviria, JairThis research study computationally examined the thermal decomposition of three molecules, 3,6-dihydro-2H-pyran, 4-methyl-3,6-dihydro-2H-pyran, and 2,6-dimethyl-3,6-dihydro-2H-pyran, using the PBE0/6-311+G(d,p) level of theory and a concerted mechanism with a 6-member cyclic transition state. For this analysis, kinetic and thermodynamic parameters were calculated for reactions within a temperature range of 584 to 633 K and compared with experimental data. Our results revealed that methyl substituents at 2, 4, and 6 positions decrease the activation free energy of the molecules. Even though the evaluated reactions exhibited high absolute synchronicity, significant differences were observed regarding the extent of their bond evolution.