Browsing by Author "Varela-M, Rubén E."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis.(Parasites and Vectors, 2018) Varela-M, Rubén E.; Ochoa, Rodrigo; Muskus, Carlos E.; Muro, Antonio; Mollinedo, FaustinoBackground Leishmaniasis is one of the world’s most neglected diseases caused by at least 20 different species of the protozoan parasite Leishmania. Although new drugs have become recently available, current therapy for leishmaniasis is still unsatisfactory. A subgroup of serine/threonine protein kinases named as related to A and C protein kinases (RAC), or protein kinase B (PKB)/AKT, has been identified in several organisms including Trypanosoma cruzi parasites. PKB/AKT plays a critical role in mammalian cell signaling promoting cell survival and is a major drug target in cancer therapy. However, the role of protozoan parasitic PKB/AKT remains to be elucidated. ResultsWe have found that anti-human AKT antibodies recognized a protein of about 57 kDa in Leishmania spp. parasites. Anti-human phospho-AKT(Thr308) antibodies identified a protein in extracts from Leishmania spp. that was upregulated following parasite exposure to stressful conditions, such as nutrient deprivation or heat shock. Incubation of AKT inhibitor X with Leishmania spp. promastigotes under stressful conditions or with Leishmania-infected macrophages led to parasite cell death. We have identified and cloned a novel gene from Leishmania donovani named Ld-RAC/AKT-like gene, encoding a 510-amino acid protein of approximately 57.6 kDa that shows a 26.5% identity with mammalian AKT1. Ld-RAC/AKT-like protein contains major mammalian PKB/AKT hallmarks, including the typical pleckstrin, protein kinase and AGC kinase domains. Unlike mammalian AKT that contains key phosphorylation sites at Thr308 and Ser473 in the activation loop and hydrophobic motif, respectively, Ld-RAC/AKT-like protein has a Thr residue in both motifs. By domain sequence comparison, we classified AKT proteins from different origins in four major subcategories that included different parasites. Conclusions Our data suggest that Ld-RAC/AKT-like protein represents a Leishmania orthologue of mammalian AKT involved in parasite stress response and survival, and therefore could become a novel therapeutic and druggable target in leishmaniasis therapy. In addition, following comparative sequence analyses, we found the RAC/AKT-like proteins from Leishmania constitute a subgroup by themselves within a general AKT-like protein family.Item In vitro and in vivo anti-schistosomal activity of the alkylphospholipid analog edelfosine(PLoS ONE, 2014) Yepes, Edward; Varela-M, Rubén E.; López-Abán, Julio; Habib Dakir, E. L.; Mollinedo, Faustino; Muro, AntonioSchistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. Five species of Schistosoma are known to infect humans, out of which S. haematobium is the most prevalent, causing the chronic parasitic disease schistosomiasis that still represents a major problem of public health in many regions of the world and especially in tropical areas, leading to serious manifestations and mortality in developing countries. Since the 1970s, praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis, but concerns about relying on a single drug to treat millions of people, and the potential appearance of drug resistance, make identification of alternative schistosomiasis chemotherapies a high priority. Alkylphospholipid analogs (APLs), together with their prototypic molecule edelfosine (EDLF), are a family of synthetic antineoplastic compounds that show additional pharmacological actions, including antiparasitic activities against several protozoan parasites.Item Inhibition of Granulomatous Inflammation and Prophylactic Treatment of Schistosomiasis with a Combination of Edelfosine and Praziquantel.(PLoS Neglected Tropical Diseases, 2015) Yepes, Edward; Varela-M, Rubén E.; López-Abán, Julio; Rojas-Caraballo, Jose; Muro, Antonio; Mollinedo, FaustinoSchistosomiasis is the third most devastating tropical disease worldwide caused by blood flukes of the genus Schistosoma. This parasitic disease is due to immunologic reactions to Schistosoma eggs trapped in tissues. Egg-released antigens stimulate tissue-destructive inflammatory and granulomatous reactions, involving different immune cell populations, including T cells and granulocytes. Granulomas lead to collagen fibers deposition and fibrosis, resulting in organ damage. Praziquantel (PZQ) is the drug of choice for treating all species of schistosomes. However, PZQ kills only adult Schistosoma worms, not immature stages. The inability of PZQ to abort early infection or prevent re-infection, and the lack of prophylactic effect prompt the need for novel drugs and strategies for the prevention of schistosomiasis.Item Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine.(PLoS Neglected Tropical Diseases, 2017) Villa-Pulgarín, Janny A.; Gajate, Consuelo; Botet, Javier; Jimenez, Alberto; Justies, Nicole; Varela-M, Rubén E.; Cuesta-Marbán, Álvaro; Müller, Ingrid; Modolell, Manuel; Revuelta, José L.; Mollinedo, FaustinoBackground Leishmaniasis is the world’s second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs) are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine) for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated. Methodology/Principal findings Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast. Conclusions/Significance The present study shows that the antileishmanial and anticancer actions of edelfosine share some common signaling processes, with mitochondria and raft-located FOF1-ATP synthase being critical in the killing process, thus identifying novel druggable targets for the treatment of leishmaniasis.Item Search of Allosteric Inhibitors and Associated Proteins of an AKT-like Kinase from Trypanosoma cruzi(International Journal of Molecular Sciences, 2018) Ochoa, Rodrigo; Rocha-Roa, Cristian; Marín-Villa, Marcel; Robledo, Sara M.; Varela-M, Rubén E.Proteins associated to the PI3K/AKT/mTOR signaling pathway are widely used targets for cancer treatment, and in recent years they have also been evaluated as putative targets in trypanosomatids parasites, such as Trypanosoma cruzi. Here, we performed a virtual screening approach to find candidates that can bind regions on or near the Pleckstrin homology domain of an AKT-like protein in T. cruzi. The compounds were also evaluated in vitro. The in silico and experimental results allowed us to identify a set of compounds that can potentially alter the intracellular signaling pathway through the AKT-like kinase of the parasite; among them, a derivative of the pyrazolopyridine nucleus with an IC50 of 14.25 ± 1.00 μM against amastigotes of T. cruzi. In addition, we built a protein–protein interaction network of T. cruzi to understand the role of the AKT-like protein in the parasite, and look for additional proteins that can be postulated as possible novel molecular targets for the rational design of compounds against T. cruzi.