Browsing by Author "Salamanca, Constain H."
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item Antimicrobial contribution of chitosan surface-modified nanoliposomes combined with colistin against sensitive and colistin-resistant clinical Pseudomonas aeruginosa(2021) Laverde Rojas, Valentina; Liscano, Yamil; Rivera Sánchez, Sandra Patricia; Ocampo Ibáñez, Ivan Darío; Betancourt, Yeiston; Alhajj, Maria José; Yarce, Cristhian J.; Salamanca, Constain H.; Oñate Garzón, JoseColistin is a re-emergent antibiotic peptide used as a last resort in clinical practice to overcome multi-drug resistant (MDR) Gram-negative bacterial infections. Unfortunately, the dissemination of colistin-resistant strains has increased in recent years and is considered a public health problem worldwide. Strategies to reduce resistance to antibiotics such as nanotechnology have been applied successfully. In this work, colistin was characterized physicochemically by surface tension measurements. Subsequently, nanoliposomes coated with highly deacetylated chitosan were prepared with and without colistin. The nanoliposomes were characterized using dynamic light scattering and zeta potential measurements. Both physicochemical parameters fluctuated relatively to the addition of colistin and/or polymer. The antimicrobial activity of formulations increased by four-fold against clinical isolates of susceptible Pseudomona aeruginosa but did not have antimicrobial activity against multidrug-resistant (MDR) bacteria. Interestingly, the free coated nanoliposomes exhibited the same antibacterial activity in both sensitive and MDR strains. Finally, the interaction of colistin with phospholipids was characterized using molecular dynamics (MD) simulations and determined that colistin is weakly associated with micelles constituted by zwitterionic phospholipidsItem Biopolymers as a Potential Alternative for the Retention of Pollutants from Vinasse: An In Silico Approach(MDPI, 2024) Aristizabal, Yesid; Ciro, Yhors; Liscano, Yamil; Salamanca, Constain H.; Oñate Garzón, JoseVinasse, a waste from the bioethanol industry, presents a crucial environmental challenge due to its high organic matter content, which is difficult to biodegrade. Currently, no sustainable alternatives are available for treating the amount of vinasse generated. Conversely, biopolymers such as cellulose, carboxymethylcellulose, and chitosan are emerging as an interesting alternative for vinasse control due to their flocculating capacity against several organic compounds. This study seeks to determine the thermodynamic behavior of in silico interactions among three biopolymers (cellulose, carboxymethylcellulose, and chitosan) regarding 15 organic compounds found in vinasse. For this, the Particle Mesh Ewald (PME) method was used in association with the Verlet cutoff scheme, wherein the Gibbs free energy (ΔG) was calculated over a 50 ns simulation period. The findings revealed that cellulose showed a strong affinity for flavonoids like cyanidin, with a maximum free energy of −84 kJ/mol and a minimum of −55 kJ/mol observed with phenolic acids and other flavonoids. In contrast, chitosan displayed the highest interactions with phenolic acids, such as gallic acid, reaching −590 kJ/mol. However, with 3-methoxy-4-hydroxyphenyl glycol (MHPG), it reached an energy of −70 kJ/mol. The interaction energy for flavonoid ranged from −105 to −96 kJ/mol. Finally, carboxymethylcellulose (CMC) demonstrated an interaction energy with isoquercetin of −238 kJ/mol, while interactions with other flavonoids were almost negligible. Alternatively, CMC exhibited an interaction energy of −124 kJ/mol with MHPG, while it was less favorable with other phenolic acids with minimal interactions. These results suggest that there are favorable interactions for the interfacial sorption of vinasse contaminants onto biopolymers, indicating their potential for use in the removal of contaminants from the effluents of the bioethanol industry.Item Decrease of antimicrobial resistance through polyelectrolyte-coated nanoliposomes loaded with β-lactam drug(MDPI AG, 2019-03-01) Arévalo, Lina M.; Yarce, Cristhian J.; Oñate-Garzón, José Fernando; Salamanca, Constain H.Currently, one of the greatest health challenges worldwide is the resistance to antibiotic drugs, which has led to the pursuit of new alternatives for the recovery of biological activity, where the use of different types of nano-systems has shown an interesting potential. In this study, we evaluated the antibiotic activity of a model drug (ampicillin) encapsulated within coated-nanoliposomes on strains of Staphylococcus aureus with different antibiotic-resistance degrees. Hence, liposomes were elaborated by the ethanol injection method and were coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterization, such as size, polydispersity, zeta potential, and encapsulation efficiency were determined using dynamic light scattering and ultrafiltration/centrifugation techniques. Although biological activity was evaluated using three ATCC strains of S. aureus corresponding to ATCC 25923 (sensitive), ATCC 29213 (resistant) and ATCC 43300 (very resistant). The results showed changes in size (from ~150 to 220 nm), polydispersity (from 0.20 to 0.45) and zeta potential (from −37 to +45 mV) for the coating process. In contrast, encapsulation efficiency of approximately 70% and an increase in antibiotic activity of 4 and 18 times more on those S. aureus-resistant strains have been observed. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Item Decrease of Antimicrobial Resistance through Polyelectrolyte-Coated Nanoliposomes Loaded with β-Lactam Drug(Pharmaceuticals, 2019) Arévalo, Lina M.; Yarce, Cristhian J.; Oñate-Garzón, José; Salamanca, Constain H.Currently, one of the greatest health challenges worldwide is the resistance to antibiotic drugs, which has led to the pursuit of new alternatives for the recovery of biological activity, where the use of different types of nano-systems has shown an interesting potential. In this study, we evaluated the antibiotic activity of a model drug (ampicillin) encapsulated within coated-nanoliposomes on strains of Staphylococcus aureus with different antibiotic-resistance degrees. Hence, liposomes were elaborated by the ethanol injection method and were coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterization, such as size, polydispersity, zeta potential, and encapsulation efficiency were determined using dynamic light scattering and ultrafiltration/centrifugation techniques. Although biological activity was evaluated using three ATCC strains of S. aureus corresponding to ATCC 25923 (sensitive), ATCC 29213 (resistant) and ATCC 43300 (very resistant). The results showed changes in size (from ~150 to 220 nm), polydispersity (from 0.20 to 0.45) and zeta potential (from −37 to +45 mV) for the coating process. In contrast, encapsulation efficiency of approximately 70% and an increase in antibiotic activity of 4 and 18 times more on those S. aureus-resistant strains have been observed.Item Development, Characterization, and Antimicrobial Evaluation of Ampicillin-Loaded Nanoparticles Based on Poly(maleic acid-co-vinylpyrrolidone) on Resistant Staphylococcus aureus Strains(MDPI, 2022-05-01) Salamanca, Constain H.; Barrera Ocampo, Álvaro; Oñate Garzón, JoseThis study was focused on synthesizing, characterizing, and evaluating the antimicrobial effect of polymer nanoparticles (NPs) loaded with ampicillin. For this, the NPs were produced through polymeric self-assembly in aqueous media assisted by high-intensity sonication, using anionic polymers corresponding to the sodium salts of poly(maleic acid-co-vinylpyrrolidone) and poly(maleic acid-co-vinylpyrrolidone) modified with decyl-amine, here named as PMA-VP and PMA-VP-N10, respectively. The polymeric NPs were analyzed and characterized through the formation of polymeric pseudo-phases utilizing pyrene as fluorescent probe, as well as by measurements of particle size, zeta potential, polydispersity index, and encapsulation efficiency. The antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant Staphylococcus aureus strains. The results showed that PMA-VP and PMA-VP-N10 polymers can self-assemble, forming several types of hydrophobic pseudo-phases with respect to the medium pH and polymer concentration. Likewise, the results described that zeta potential, particle size, polydispersity index, and encapsulation efficiency are extremely dependent on the medium pH, whereas the antimicrobial activity displayed an interesting recovery of antibiotic activity when ampicillin is loaded in the polymeric NPs.Item Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria(Multidisciplinary Digital Publishing Institute (MDPI), 2025-02-01) Perdomo, Isabella; Mora, Carolina; Pinillos, Juan; Oñate Garzón, José; Salamanca, Constain H.Background: Colistin, a lipopeptide antibiotic usually used as a last resort against multidrug-resistant bacterial strains, has also begun to address the challenge of antimicrobial resistance. Objective: this study evaluates whether hybrid nanoparticles (HNPs) composed of Phospholipon® 90G, cholesterol, and colistin can enhance its effectiveness against resistant clinical isolates of Klebsiella pneumoniae, a clinically significant Gram-negative bacterium. Methods: HNPs were developed using the ethanol injection method and coated with chitosan through a layer-by-layer technique. HNP characterization included measurements of particle size, polydispersity index (PDI), and zeta potential, along with thermal (DSC) and spectrophotometric (FT-IR) analyses. Ultrafiltration and ATR-FTIR were employed to assess colistin’s association and release efficiencies. The biological evaluation followed CLSI guidelines. Results: uncoated hybrid nanoparticles (U-HNP) and chitosan-coated hybrid nanoparticles (Ch-HNP) described monodisperse populations, with respective PDI values of ~0.124 and ~0.150, Z-averages of ~249 nm and ~250 nm, and zeta potential values of +17 mV and +20 mV. Colistin’s association and release efficiencies were approximately 79% and 10%, respectively. Regarding antimicrobial activity, results showed that colistin as part of HNPs is poorly effective against this microorganism. However, in the most resistant strain, colistin activity increased slightly when the HNP was coated with chitosan. Conclusions: HNPs described high stability against disaggregation, limiting the colistin release and, therefore, affecting antimicrobial performance.Item Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria(International Journal Of Molecular Sciences, 2019) Cantor, Stefania; Vargas, Lina; Rojas A., Oscar E.; Yarce, Cristhian J.; Salamanca, Constain H.; Oñate-Garzón, JoseBacteria are a common group of foodborne pathogens presenting public health issues with a large economic burden for the food industry. Our work focused on a solution to this problem by evaluating antibiotic activity against two bacteria (Listeria monocytogenes and Escherichia coli) of relevance in the field of foodstuffs. We used two approaches: (i) structural modification of the antimicrobial peptides and (ii) nano-vehiculisation of the modified peptides into polymer-coated liposomes. To achieve this, two antimicrobial peptides, herein named ‘peptide +2′ and ‘peptide +5′ were synthesised using the solid phase method. The physicochemical characterisation of the peptides was carried out using measurements of surface tension and dynamic light scattering. Additionally, nanoliposomes were elaborated by the ethanol injection method and coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterisation, in terms of size, polydispersity and zeta potential, was undertaken using dynamic light scattering. The results show that the degree of hydrophilic modification in the peptide leads to different characteristics of amphipathicity and subsequently to different physicochemical behaviour. On the other hand, antibacterial activity against both bacteria was slightly altered after modifying peptide sequence. Nonetheless, after the encapsulation of the peptides into polymer-coated nano-liposomes, the antibacterial activity increased approximately 2000-fold against that of L. monocytogenes.Item Evaluation of the antimicrobial activity of cationic peptides loaded in surface-modified nanoliposomes against foodborne bacteria(MDPI AG, 2019-02-05) Cantor, Stefania; Vargas, Lina; Rojas, Oscar E.A.; Yarce, Cristhian J.; Salamanca, Constain H.; Oñate-Garzón, José FernandoBacteria are a common group of foodborne pathogens presenting public health issues with a large economic burden for the food industry. Our work focused on a solution to this problem by evaluating antibiotic activity against two bacteria (Listeria monocytogenes and Escherichia coli) of relevance in the field of foodstuffs. We used two approaches: (i) structural modification of the antimicrobial peptides and (ii) nano-vehiculisation of the modified peptides into polymer-coated liposomes. To achieve this, two antimicrobial peptides, herein named ‘peptide +2′ and ‘peptide +5′ were synthesised using the solid phase method. The physicochemical characterisation of the peptides was carried out using measurements of surface tension and dynamic light scattering. Additionally, nanoliposomes were elaborated by the ethanol injection method and coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterisation, in terms of size, polydispersity and zeta potential, was undertaken using dynamic light scattering. The results show that the degree of hydrophilic modification in the peptide leads to different characteristics of amphipathicity and subsequently to different physicochemical behaviour. On the other hand, antibacterial activity against both bacteria was slightly altered after modifying peptide sequence. Nonetheless, after the encapsulation of the peptides into polymer-coated nano-liposomes, the antibacterial activity increased approximately 2000-fold against that of L. monocytogenes. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Item In silico characterization of the interaction between the pbp2a “decoy” protein of resistant staphylococcus aureus and the monomeric units of eudragit e-100 and poly(Maleic acid-alt-octadecene) polymers(2021) Liscano, Yamil; Amú, Ana; González, Astrid; Oñate Garzón, Jose; Salamanca, Constain H.Antimicrobial treatment alternatives for methicillin-resistant Staphylococcus aureus (MRSA) are increasingly limited. MRSA strains are resistant to methicillin due to the formation of β-lactamase enzymes, as well as the acquisition of the mecA gene, which encodes the penicillin-binding protein (PBP2a) that reduces the affinity for β-lactam drugs. Previous studies have shown that the use of ampicillin-loaded nanoparticles can improve antimicrobial activity on resistant S. aureus strains. However, the biological mechanism of this effect has not yet been properly elucidated. Therefore, this short communication focused on characterizing the in silico interactions of the PBP2a membrane receptor protein from S. aureus against the monomeric units of two polymeric materials previously used in the development of different nanoparticles loaded with ampicillin. Such polymers correspond to Eudragit E-100 chloride (EuCl) and the sodium salt of poly(maleic acid-alt-octadecene) (PAM-18Na). For this, molecular coupling studies were carried out in the active site of the PBP2a protein with the monomeric units of both polymers in neutral and ionized form, as well as with ampicillin antibiotic (model β-lactam drug). The results showed that ampicillin, as well as the monomeric units of EuCl and PAM18Na, described a slight binding free energy to the PBPa2 protein. In addition, it was found that the amino acids of the active site of the PBPa2 protein have interactions of different types and intensities, suggesting, in turn, different forms of protein–substrate coupling.Item Increases in hydrophilicity and charge on the polar face of alyteserin 1c helix change its selectivity towards gram-positive bacteria(MDPI AG, 2019-11-27) Liscano, Yamil; Salamanca, Constain H.; Vargas, Lina; Cantor, Stefania; Laverde Rojas, Valentina; Oñate Garzón, JoséRecently, resistance of pathogens towards conventional antibiotics has increased, representing a threat to public health globally. As part of the fight against this, studies on alternative antibiotics such as antimicrobial peptides have been performed, and it has been shown that their sequence and structure are closely related to their antimicrobial activity. Against this background, we here evaluated the antibacterial activity of two peptides developed by solid-phase synthesis, Alyteserin 1c (WT) and its mutant derivative (ΔM), which shows increased net charge and reduced hydrophobicity. These structural characteristics were modified as a result of amino acid substitutions on the polar face of the WT helix. The minimum inhibitory concentration (MIC) of both peptides was obtained in Gram-positive and Gram-negative bacteria. The results showed that the rational substitutions of the amino acids increased the activity in Gram-positive bacteria, especially against Staphylococcus aureus, for which the MIC was one-third of that for the WT analog. In contrast to the case for Gram-positive bacteria, these substitutions decreased activity against Gram-negative bacteria, especially in Escherichia coli, for which the MIC was eight-fold higher than that exhibited by the WT peptide. To understand this, models of the peptide behavior upon interacting with membranes of E. coli and S. aureus created using molecular dynamics were studied and it was determined that the helical stability of the peptide is indispensable for antimicrobial activity. The hydrogen bonds between the His20 of the peptides and the phospholipids of the membranes should modulate the selectivity associated with structural stability at the carboxy-terminal region of the peptides.Item Synthesis, characterisation and biological evaluation of ampicillin-chitosan-polyanion nanoparticles produced by ionic gelation and polyelectrolyte complexation assisted by high-intensity sonication(MDPI AG, 2019-10-21) Ciro, Yhors; Rojas, John; Oñate Garzon, Jose; Salamanca, Constain H.Recently, one of the promising strategies to fight sensitive and resistant bacteria, and decrease the morbidity and mortality rates due to non-nosocomial infections, is to use antibiotic-loaded nanoparticles. In this study, ampicillin-loaded chitosan–polyanion nanoparticles were produced through the techniques of ionic gelation and polyelectrolyte complexation assisted by high-intensity sonication, using several crosslinking agents, including phytic acid (non-polymeric polyanion), sodium and potassium salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene) (polymeric polyanions). These nanoparticles were analysed and characterised in terms of particle size, polydispersity index, zeta potential and encapsulation efficiency. The stability of these nanosystems was carried out at temperatures of 4 and 40 °C, and the antimicrobial effect was determined by the broth microdilution method using sensitive and resistant Staphylococcus aureus strains. The results reveal that most of the nanosystems have sizes <220 nm, positive zeta potential values and a monodisperse population, except for the nanoparticles crosslinked with PAM-18 polyanions. The nanometric systems exhibited adequate stability preventing aggregation and revealed a two-fold increase in antimicrobial activity when compared with free ampicillin. This study demonstrates the potential application of synthesised nanoparticles in the field of medicine, especially for treating infections caused by pathogenic S. aureus strains.Item Synthesis, Characterization, and Biological Evaluation of Chitosan Nanoparticles Cross-Linked with Phytic Acid and Loaded with Colistin against Extensively Drug-Resistant Bacteria(MDPI, 2024) Pacheco, Fabian; Barrera, Alejandro; Ciro, Yhors; Polo Cerón, Dorian; Salamanca, Constain H.; Oñate Garzón, JoséThe natural evolution of microorganisms, as well as the inappropriate use of medicines, have accelerated the problem of drug resistance to many of the antibiotics employed today. Colistin, a lipopeptide antibiotic used as a last resort against multi-resistant strains, has also begun to present these challenges. Therefore, this study was focused on establishing whether colistin associated with chitosan nanoparticles could improve its antibiotic activity on an extremely resistant clinical isolate of Pseudomonas aeruginosa, which is a clinically relevant Gram-negative bacterium. For this aim, nanoparticulate systems based on phytic acid cross-linked chitosan and loaded with colistin were prepared by the ionic gelation method. The characterization included particle size, polydispersity index-PDI, and zeta potential measurements, as well as thermal (DSC) and spectrophotometric (FTIR) analysis. Encapsulation efficiency was assessed by the bicinchoninic acid (BCA) method, while the antimicrobial evaluation was made following the CLSI guidelines. The results showed that colistin-loaded nanoparticles were monodispersed (PDI = 0.196) with a particle size of around 266 nm and a positive zeta potential (+33.5 mV), and were able to associate with around 65.8% of colistin and decrease the minimum inhibitory concentration from 16 μg/mL to 4 μg/mL. These results suggest that the association of antibiotics with nanostructured systems could be an interesting alternative to recover the antimicrobial activity on resistant strains.