Browsing by Author "Rojas A., Oscar E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Evaluation of the Antimicrobial Activity of Cationic Peptides Loaded in Surface-Modified Nanoliposomes against Foodborne Bacteria(International Journal Of Molecular Sciences, 2019) Cantor, Stefania; Vargas, Lina; Rojas A., Oscar E.; Yarce, Cristhian J.; Salamanca, Constain H.; Oñate-Garzón, JoseBacteria are a common group of foodborne pathogens presenting public health issues with a large economic burden for the food industry. Our work focused on a solution to this problem by evaluating antibiotic activity against two bacteria (Listeria monocytogenes and Escherichia coli) of relevance in the field of foodstuffs. We used two approaches: (i) structural modification of the antimicrobial peptides and (ii) nano-vehiculisation of the modified peptides into polymer-coated liposomes. To achieve this, two antimicrobial peptides, herein named ‘peptide +2′ and ‘peptide +5′ were synthesised using the solid phase method. The physicochemical characterisation of the peptides was carried out using measurements of surface tension and dynamic light scattering. Additionally, nanoliposomes were elaborated by the ethanol injection method and coated with a cationic polymer (Eudragit E-100) through the layer-by-layer process. Liposome characterisation, in terms of size, polydispersity and zeta potential, was undertaken using dynamic light scattering. The results show that the degree of hydrophilic modification in the peptide leads to different characteristics of amphipathicity and subsequently to different physicochemical behaviour. On the other hand, antibacterial activity against both bacteria was slightly altered after modifying peptide sequence. Nonetheless, after the encapsulation of the peptides into polymer-coated nano-liposomes, the antibacterial activity increased approximately 2000-fold against that of L. monocytogenes.Item Studies on the interaction of alyteserin 1c peptideand its cationic analogue with model membranes imitating mammalian and bacterial membranes(MDPI AG, 2019-09-25) Aragón-Muriel, Alberto; Ausili, Alessio; Sánchez, Kevin; Rojas A., Oscar E.; Londoño Mosquera, Juan; Polo-Cerón, Dorian; Oñate-Garzón, JoseAntimicrobial peptides (AMPs) are effector molecules of the innate immune system and have been isolated from multiple organisms. Their antimicrobial properties are due to the fact that they interact mainly with the anionic membrane of the microorganisms, permeabilizing it and releasing the cytoplasmic content. Alyteserin 1c (+2), an AMP isolated from Alytes obstetricans and its more cationic and hydrophilic analogue (+5) were synthesized using the solid phase method, in order to study the interaction with model membranes by calorimetric and spectroscopic assays. Differential scanning calorimetry (DSC) showed that both peptides had a strong effect when the membrane contained phosphatidylcholine (PC) alone or was mixed with phosphatidylglycerol (PG), increasing membrane fluidization. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the secondary structure of the peptide. Peptide +2 exhibited a transition from β-sheet/turns to β-sheet/α-helix structures after binding with model membranes, whereas peptide +5 had a transition from aggregation/unordered to β-sheet/α-helix structures after binding with membrane-contained PC. Interestingly, the latter showed a β-sheet structure predominantly in the presence of PG lipids. Additionally, molecular dynamics (MD) results showed that the carboxy-terminal of the peptide +5 has the ability to insert into the surface of the PC/PG membranes, resulting in the increase of the membrane fluidity