Repository logo
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Leyton, V."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Antiresonant quantum transport in ac-driven molecular nanojunctions
    (American Physical Society, 2018-04-25) Leyton, V.; Weiss, S.; Thorwart, M.
    We calculate the electric charge current flowing through a vibrating molecular nanojunction, which is driven by an ac voltage, in its regime of nonlinear oscillations. Without loss of generality, we model the junction by a vibrating molecule, which is doubly clamped to two metallic leads which are biased by time-periodic ac voltages. Dressed-electron tunneling between the leads and the molecule drives the mechanical degree of freedom out of equilibrium. In the deep quantum regime, where only a few vibrational quanta are excited, the formation of coherent vibrational resonances affects the dressed-electron tunneling. In turn, back action modifies the electronic ac current passing through the junction. The concert of nonlinear vibrations and ac driving induces quantum transport currents, which are antiresonant to the applied ac voltage. Quantum back action on the flowing nonequilibriun current allows us to obtain rather sharp spectroscopic information on the population of the mechanical vibrational states.
  • No Thumbnail Available
    Item
    Magnus expansion for a chirped quantum two-level system
    (American Physical Society, 2018-06-07) Nalbach, P.; Leyton, V.
    We derive a Magnus expansion for a frequency chirped quantum two-level system. We obtain a time-independent effective Hamiltonian which generates a stroboscopic time evolution. At lowest order the according dynamics is identical to results from using a rotating wave approximation. We determine, furthermore, also the next higher-order corrections within our expansion scheme in correspondence to the Bloch-Siegert shifts for harmonically driven systems. Importantly, our scheme can be extended to more complicated systems, i.e., even many-body systems.
  • No Thumbnail Available
    Item
    Quench Dynamics of Neutral Atoms in Out-Equilibrium One-Dimensional Optical Lattices
    (Institute of Physics Publishing, 2018-10-01) Leyton, V.; Arguëlles, A.; Camargo, M.
    A quantum simulator is proposed for nucleation and growth dynamics using an out-of equilibrium optical lattice. We calculate the density of neutral atoms in the lattice and we establish the connection with the Kolmogorov-Mehl-Johnson-Avrami model. Here we show that an Avrami equation can describe most of the evolution in time of the population growth in the lattice, coherence between neutral atoms leads a complex growth rate.

Higher Education Institution subject to inspection and surveillance by the Ministry of National Education.
Legal status granted by the Ministry of Justice through Resolution No. 2,800 of September 2, 1959.
Recognized as a University by Decree No. 1297 of 1964 issued by the Ministry of National Education.

Institutionally Accredited in High Quality through Resolution No. 018144 of September 27, 2021, issued by the Ministry of National Education.

Ciudadela Pampalinda

Calle 5 # 62-00 Barrio Pampalinda
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Headquarters Centro

Carrera 8 # 8-17 Barrio Santa Rosa
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Palmira Section

Carrera 29 # 38-47 Barrio Alfonso López
PBX: +57 (602) 284 4006
Palmira, Valle del Cauca
Colombia

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support