Repository logo
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Khalaf, Osama Ibrahim"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    DRLBTSA: Deep reinforcement learning based task-scheduling algorithm in cloud computing
    (Springer, 2024) Mangalampalli, Sudheer; Karri, Ganesh Reddy; Kumar, Mohit; Khalaf, Osama Ibrahim; Tavera Romero, Carlos Andres; Abdul Sahib, Ghaida Muttashar
    Task scheduling in cloud paradigm brought attention of all researchers as it is a challenging issue due to uncertainty, heterogeneity, and dynamic nature as they are varied in size, processing capacity and number of tasks to be scheduled. Therefore, ineffective scheduling technique may lead to increase of energy consumption SLA violations and makespan. Many of authors proposed heuristic approaches to solve task scheduling problem in cloud paradigm but it is fall behind to achieve goal effectively and need improvement especially while scheduling multimedia tasks as they consists of more heterogeneity, processing capacity. Therefore, to handle this dynamic nature of tasks in cloud paradigm, a scheduling mechanism, which automatically takes the decision based on the upcoming tasks onto cloud console and already running tasks in the underlying virtual resources. In this paper, we have used a Deep Q-learning network model to addressed the mentioned scheduling problem that search the optimal resource for the tasks. The entire extensive simulationsare performed usingCloudsim toolkit. It was carried out in two phases. Initially random generated workload is used for simulation. After that, HPC2N and NASA workload are used to measure performance of proposed algorithm. DRLBTSA is compared over baseline algorithms such as FCFS, RR, Earliest Deadline first approaches. From simulation results it is evident that our proposed scheduler DRLBTSA minimizes makespan over RR,FCFS, EDF, RATS-HM, MOABCQ by 29.76%, 41.03%, 27.4%, 33.97%, 33.57% respectively. SLA violation percentage for DRLBTSA minimized overRR,FCFS, EDF, RATS-HM, MOABCQ by48.12%, 41.57%, 37.57%, 36.36%, 30.59% respectively and energy consumption for DRLBTSA over RR,FCFS, EDF, RATS-HM, MOABCQ by36.58%,43.2%, 38.22%, 38.52%, 33.82%existing approaches.

Higher Education Institution subject to inspection and surveillance by the Ministry of National Education.
Legal status granted by the Ministry of Justice through Resolution No. 2,800 of September 2, 1959.
Recognized as a University by Decree No. 1297 of 1964 issued by the Ministry of National Education.

Institutionally Accredited in High Quality through Resolution No. 018144 of September 27, 2021, issued by the Ministry of National Education.

Ciudadela Pampalinda

Calle 5 # 62-00 Barrio Pampalinda
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Headquarters Centro

Carrera 8 # 8-17 Barrio Santa Rosa
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Palmira Section

Carrera 29 # 38-47 Barrio Alfonso López
PBX: +57 (602) 284 4006
Palmira, Valle del Cauca
Colombia

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support