Repository logo
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carvalho Jr., Paulo S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Mechanochemical Synthesis of a Multicomponent Solid Form: The Case of 5-Fluorocytosine Isoniazid Codrug
    (American Chemical Society, 2018-07-12) Souza, Matheus S.; Diniz, Luan F.; Vogt, Lautaro; Carvalho Jr., Paulo S.; D’vries, Richard F.; Ellena, Javier
    Mechanochemistry synthesis was applied to the supramolecular synthesis and green scale-up production of a 1:1 drug–drug cocrystal involving the antimetabolite prodrug 5-Fluorocytosine (5-FC) and the tuberculostatic drug Isoniazid (INH), namely, 5FC-INH. Crystalline material, also obtained by traditional slow evaporation methods, was analyzed by single-crystal X-ray diffraction (XRD). The crystal packing is stabilized by a classical N–H···N hydrogen-bond interaction between the amine moiety of 5-FC and the INH pyridine nitrogen. IR and Raman data provided spectroscopic evidence about the hydrogen atom positions, thereby confirming the neutral nature of the cocrystal. Furthermore, 5FC-INH codrug was also evaluated by a range of analytical techniques such as powder XRD and thermal (thermogravimetric analysis, differential scanning calorimetry, hot stage microscopy) analyses. A physical stability study was performed in high relative humidity conditions to verify possible 5-FC solid-state hydration and/or INH degradation. The equilibrium solubility of this codrug was compared to the anhydrous 5-FC and INH raw materials, in pH 1.2 buffer media, and it was found to be similar to that of 5-FC, a biopharmaceutics classification system class I drug. The results show that the cocrystal has superior phase stability properties against moisture when compared to the starting pharmaceutical ingredients, so it could be considered as a potential candidate for the treatment of concomitant fungal infections, tuberculosis, and cancer.
  • No Thumbnail Available
    Item
    Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations
    (Journal of Molecular Structure, 2017) Diniz, Luan F.; Souza, Matheus S.; Carvalho Jr., Paulo S.; P. da Silva, Cecilia C.; D'Vries, Richard F.; Ellena, Javier
    Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH−PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH−PNBA and INH−PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.

Higher Education Institution subject to inspection and surveillance by the Ministry of National Education.
Legal status granted by the Ministry of Justice through Resolution No. 2,800 of September 2, 1959.
Recognized as a University by Decree No. 1297 of 1964 issued by the Ministry of National Education.

Institutionally Accredited in High Quality through Resolution No. 018144 of September 27, 2021, issued by the Ministry of National Education.

Ciudadela Pampalinda

Calle 5 # 62-00 Barrio Pampalinda
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Headquarters Centro

Carrera 8 # 8-17 Barrio Santa Rosa
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Palmira Section

Carrera 29 # 38-47 Barrio Alfonso López
PBX: +57 (602) 284 4006
Palmira, Valle del Cauca
Colombia

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support