Repository logo
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cabanzo, Rafael"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Effect of modification substrate on the microstructure of hydroxyapatite coating
    (Institute of Physics Publishing, 2017-01-25) Realpe-Jaramillo, J.; Morales-Morales, Jimmy Alexander; González-Sánchez, J.; Cabanzo, Rafael; Mejía-Ospino, Enrique; Rodríguez-Pereira, Jhonatan
    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications. © Published under licence by IOP Publishing Ltd.
  • No Thumbnail Available
    Item
    Effect of modification substrate on the microstructure of hydroxyapatite coating
    (Journal of Physics: Conference Series, 2017) Realpe-Jaramillo, J.; Morales-Morales, Jimmy Alexander; González-Sánchez, J. A.; Cabanzo, Rafael; Mejía-Ospino, Enrrique; Rodríguez−Pereira, J.
    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.
  • No Thumbnail Available
    Item
    Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites
    (Institute of Physics Publishing, 2017-01-25) Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, Jimmy Alexander; Cabanzo, Rafael; Meléndez, A. M.
    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy. © Published under licence by IOP Publishing Ltd.

Higher Education Institution subject to inspection and surveillance by the Ministry of National Education.
Legal status granted by the Ministry of Justice through Resolution No. 2,800 of September 2, 1959.
Recognized as a University by Decree No. 1297 of 1964 issued by the Ministry of National Education.

Institutionally Accredited in High Quality through Resolution No. 018144 of September 27, 2021, issued by the Ministry of National Education.

Ciudadela Pampalinda

Calle 5 # 62-00 Barrio Pampalinda
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Headquarters Centro

Carrera 8 # 8-17 Barrio Santa Rosa
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Palmira Section

Carrera 29 # 38-47 Barrio Alfonso López
PBX: +57 (602) 284 4006
Palmira, Valle del Cauca
Colombia

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support