Repository logo
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Banumathy D."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Breast Calcifications and Histopathological Analysis on Tumour Detection by CNN
    (Tech Science Press, 2022) Banumathy D.; Khalaf, Osamah Ibrahim; Tavera Romero, Carlos Andrés; Raja, P. Vishnu; Sharma, Dilip Kumar
    The most salient argument that needs to be addressed universally is Early Breast Cancer Detection (EBCD), which helps people live longer lives. The Computer-Aided Detection (CADs)/Computer-Aided Diagnosis (CADx) system is indeed a software automation tool developed to assist the health professions in Breast Cancer Detection and Diagnosis (BCDD) and minimise mortality by the use of medical histopathological image classification in much less time. This paper purposes of examining the accuracy of the Convolutional Neural Network (CNN), which can be used to perceive breast malignancies for initial breast cancer detection to determine which strategy is efficient for the early identification of breast cell malignancies formation of masses and Breast microcalcifications on the mammogram. When we have insufficient data for a new domain that is desired to be handled by a pre-trained Convolutional Neural Network of Residual Network (ResNet50) for Breast Cancer Detection and Diagnosis, to obtain the Discriminative Localization, Convolutional Neural Network with Class Activation Map (CAM) has also been used to perform breast microcalcifications detection to find a specific class in the Histopathological image. The test results indicate that this method performed almost 225.15% better at determining the exact location of disease (Discriminative Localization) through breast microcalcifications images. ResNet50 seems to have the highest level of accuracy for images of Benign Tumour (BT)/Malignant Tumour (MT) cases at 97.11%. ResNet50’s average accuracy for pre-trained Convolutional Neural Network is 94.17%.
  • No Thumbnail Available
    Item
    CAD of BCD from Thermal Mammogram Images Using Machine Learning
    (Tech Science Press, 2022) Banumathy D.; Khalaf, Osamah Ibrahim; Tavera Romero, Carlos Andrés; Indra J.; Sharma, Dilip Kumar
    Lump in the breast, discharge of blood from the nipple, and deformation of the nipple/breast and its texture are the symptoms of breast cancer. Though breast cancer is very common in women, men can also get breast cancer. In the early stages, BCD makes use of Thermal Mammograms Breast Images (TMBI). The cost of treatment can be severely reduced in the early stages of detection. Based on the techniques of segmentation, the Breast Cancer Detection (BCD) works. Moreover, by providing a balanced, reliable and appropriate second opinion, a tremendous role has been played by ML in medical practices due to enhanced Information and Communication Technology (ICT). For the purpose of making the whole detection process of Malignant Tumor (MT)/Benign Tumor (BT) very resourceful and time-efficient, there is now a possibility to form an automated and precise ComputerAided Diagnosis System (CADs). Several Image Pattern Recognition Techniques were used to classify breast cancer using Thermal Mammograms Image Processing Techniques (TMIPT) in the present investigation. Presenting a new model to classify the BCD with the help of TMIPT, thermal imaging, and smart devices is the aim of this research article. Using well-designed experiments like Intensive Preoperative Radio Therapy (IPRT) and BCD, the implementation and valuation of a concrete application are carried out. This proposed method is for the automatic classification of TMBI of a similar standard so that the thermal camera of FLIR One Gen 3 One 3rd Generation (FLIR One Gen 3) that can be attached to the smart devices are capable of capturing BCD using Machine Learning (ML) algorithms. To imitate the behaviour of human Artificial Intelligence (AI), designing drug formulations, helping in clinical diagnosis and robotic surgery systems, finding medical statistical datasets, and decoding human diseases’ wireless network model as well as cancer are the reasons for the ML to empower the computer and robots. The outperformance of the ML models against all other classifiers and scoring impressively across heterogeneous performance metrics like 98.44% of Precision, 98.83% of Accuracy, and 100% of Recall are observed from the comparative analysis.

Higher Education Institution subject to inspection and surveillance by the Ministry of National Education.
Legal status granted by the Ministry of Justice through Resolution No. 2,800 of September 2, 1959.
Recognized as a University by Decree No. 1297 of 1964 issued by the Ministry of National Education.

Institutionally Accredited in High Quality through Resolution No. 018144 of September 27, 2021, issued by the Ministry of National Education.

Ciudadela Pampalinda

Calle 5 # 62-00 Barrio Pampalinda
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Headquarters Centro

Carrera 8 # 8-17 Barrio Santa Rosa
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Palmira Section

Carrera 29 # 38-47 Barrio Alfonso López
PBX: +57 (602) 284 4006
Palmira, Valle del Cauca
Colombia

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support