Repository logo
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All
  • English
  • Español
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alarfaj, Fawaz Khaled"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Numerical analysis of electrohydrodynamic flow in a circular cylindrical conduit by using neuro evolutionary technique
    (2021-11-02) Khan, Naveed Ahmad; Sulaiman, Muhammad; Romero, Carlos Andrés Tavera; Alarfaj, Fawaz Khaled
    This paper analyzes the mathematical model of electrohydrodynamic (EHD) fluid flow in a circular cylindrical conduit with an ion drag configuration. The phenomenon was modelled as a nonlinear differential equation. Furthermore, an application of artificial neural networks (ANNs) with a generalized normal distribution optimization algorithm (GNDO) and sequential quadratic programming (SQP) were utilized to suggest approximate solutions for the velocity, displacements, and acceleration profiles of the fluid by varying the Hartmann electric number (Ha2) and the strength of nonlinearity (α). ANNs were used to model the fitness function for the governing equation in terms of mean square error (MSE), which was further optimized initially by GNDO to exploit the global search. Then SQP was implemented to complement its local convergence. Numerical solutions obtained by the design scheme were compared with RK‐4, the least square method (LSM), and the orthonormal Bernstein collocation method (OBCM). Stability, convergence, and robustness of the proposed algorithm were endorsed by the statistics and analysis on results of absolute errors, mean absolute deviation (MAD), Theil’s inequality coefficient (TIC), and error in Nash Sutcliffe efficiency (ENSE).
  • No Thumbnail Available
    Item
    Theoretical analysis on absorption of carbon dioxide (Co2) into solutions of phenyl glycidyl ether (pge) using nonlinear autoregressive exogenous neural networks
    (2021) Khan, Naveed Ahmad; Sulaiman, Muhammad; Romero, Carlos Andrés Tavera; Alarfaj, Fawaz Khaled
    In this paper, we analyzed the mass transfer model with chemical reactions during the absorption of carbon dioxide (CO2 ) into phenyl glycidyl ether (PGE) solution. The mathematical model of the phenomenon is governed by a coupled nonlinear differential equation that corresponds to the reaction kinetics and diffusion. The system of differential equations is subjected to Dirichlet boundary conditions and a mixed set of Neumann and Dirichlet boundary conditions. Further, to calculate the concentration of CO2, PGE, and the flux in terms of reaction rate constants, we adopt the supervised learning strategy of a nonlinear autoregressive exogenous (NARX) neural network model with two activation functions (Log-sigmoid and Hyperbolic tangent). The reference data set for the possible outcomes of different scenarios based on variations in normalized parameters (α1, α2, β1, β2, k) are obtained using the MATLAB solver “pdex4”. The dataset is further interpreted by the Levenberg–Marquardt (LM) backpropagation algorithm for validation, testing, and training. The results obtained by the NARX-LM algorithm are compared with the Adomian decomposition method and residual method. The rapid convergence of solutions, smooth implementation, computational 041 complexity, absolute errors, and statistics of the mean square error further validate the design scheme’s worth and efficiency

Higher Education Institution subject to inspection and surveillance by the Ministry of National Education.
Legal status granted by the Ministry of Justice through Resolution No. 2,800 of September 2, 1959.
Recognized as a University by Decree No. 1297 of 1964 issued by the Ministry of National Education.

Institutionally Accredited in High Quality through Resolution No. 018144 of September 27, 2021, issued by the Ministry of National Education.

Ciudadela Pampalinda

Calle 5 # 62-00 Barrio Pampalinda
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Headquarters Centro

Carrera 8 # 8-17 Barrio Santa Rosa
PBX: +57 (602) 518 3000
Santiago de Cali, Valle del Cauca
Colombia

Palmira Section

Carrera 29 # 38-47 Barrio Alfonso López
PBX: +57 (602) 284 4006
Palmira, Valle del Cauca
Colombia

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support