Browsing by Author "Aguirre Loredo, Rocio Yaneli"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Evaluation of the Antimicrobial, Thermal, Mechanical, and Barrier Properties of Corn Starch–Chitosan Biodegradable Films Reinforced with Cellulose Nanocrystals(MDPI, 2022-06-01) Díaz Cruz, Claudio Alonso; Caicedo, Carolina; Jiménez Regalado, Enrique Javier; Díaz de León, Ramón; López González, Ricardo; Aguirre Loredo, Rocio YaneliPackaging materials play an essential role in the preservation and marketing of food and other products. To improve their conservation capacity, antimicrobial agents that inhibit bacterial growth are used. Biopolymers such as starch and chitosan are a sustainable alternative for the generation of films for packaging that can also serve as a support for preservatives and antimicrobial agents. These substances can replace packaging of synthetic origin and maintain good functional properties to ensure the quality of food products. Films based on a mixture of corn starch and chi-tosan were developed by the casting method and the effect of incorporating cellulose nanocrystals (CNC) at different concentrations (0 to 10% w/w) was studied. The effect of the incorporation of CNC on the rheological, mechanical, thermal and barrier properties, as well as the antimicrobial activity of nanocomposite films, was evaluated. A significant modification of the functional and antimicrobial properties of the starch–chitosan films was observed with an increase in the concentration of nanomaterials. The films with CNC in a range of 0.5 to 5% presented the best performance. In line with the physicochemical characteristics which are desired in antimicrobial materials, this study can serve as a guide for the development this type of packaging for food use.Item Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties(2022-10-01) Fonseca García, Abril; Osorio, Brayan Hernández; Aguirre Loredo, Rocio Yaneli; Calambas, Heidy Lorena; Caicedo, CarolinaIn this work, the miscibility of blends of thermoplastic Achira Starch (AS) and polylactic acid (PLA) was evaluated, assisted by Pluronic® F127 an amphiphilic triblock copolymer that acts as a surfactant and promotes the reduction of surface tension among AS and PLA in solution by emulsion stabilization. Different formulations of AS/PLA blends were obtained at 75:25, 50:50, and 25:75 containing 0 %, 4 %, and 8 % of Pluronic® F127, and glycerol was used as a plasticizer. Solvent casting was the method used to obtain blended polymeric films, which were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Xray diffraction (XRD), Thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC) and wettability by contact angle measurements. The results demonstrate that miscibility of PLA in AS or vice versa was achieved. The stability of emulsion and posterior drying of the different formulations allows the production of films for packaging, pharmaceutical, or biomedical applications.Item Preparation and physicochemical properties of modified corn starch–chitosan biodegradable films(2021) Jiménez Regalado, Enrique Javier; Caicedo, Carolina; Fonseca García, Abril; Rivera Vallejo, Claudia Cecilia; Aguirre Loredo, Rocio YaneliStarch is a biopolymer with enormous potential for generating new biodegradable packages due to its easy availability and low cost. However, due to its weak functional properties, limitation of its interaction with some hydroxyl groups and evaluation of blends with other polymers are necessary in order to improve its performance. Glycerol-plasticized acetylated corn starch films were developed using the casting method, and the impact of incorporating chitosan (TPS:CH) in various proportions (75:25, 50:50, and 25:75 v/v) was studied in the present research. The effect of chitosan ratios on the physical, mechanical, water-vapor barrier, and thermal properties of the film was studied. Chitosan-protonated amino groups promoted the formation of intermolecular bonds, improving tensile strength, thermal stability, hydrophobicity, water adsorption capacity, and the gas barrier of starch films. The results show that the film composed of TPS25-CH75 proved to be the best barrier to water vapor; thus, these composite films are excellent choices for developing biodegradable packaging for the food industry