Cardona, Carlos A.Gómez, Humberto2019-07-032019-07-032016-10-1211266708https://repositorio.usc.edu.co/handle/20.500.12421/254Recently, we proposed a new approach using a punctured Elliptic curve in the CHY framework in order to compute one-loop scattering amplitudes. In this note, we further develop this approach by introducing a set of connectors, which become the main ingredient to build integrands on M 1 , n , the moduli space of n-punctured Elliptic curves. As a particular application, we study the Φ 3 bi-adjoint scalar theory. We propose a set of rules to construct integrands on M 1 , n from Φ 3 integrands on M 0 , n , the moduli space of n-punctured spheres. We illustrate these rules by computing a variety of Φ 3 one-loop Feynman diagrams. Conversely, we also provide another set of rules to compute the corresponding CHY-integrand on M 1 , n by starting instead from a given Φ 3 one-loop Feynman diagram. In addition, our results can easily be extended to higher loops. © 2016, The Author(s).enDifferential and Algebraic GeometryField Theories in Higher DimensionsScattering AmplitudesCHY-graphs on a torusArticle